Vascularization of Porous PolyHEMA Scaffolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Agent Systems for Biomedical Simulation: Modeling Vascularization of Porous Scaffolds

An interesting application of multi-agent systems (MAS) is in modeling systems that can be represented by independent entities interacting together, the so-called agent-based modeling (ABM). In this paper MAS paradigm is used as a promising technique for representing complex biomedical systems. A brief survey of some ABM of biomedical systems is presented, followed by the description of a multi...

متن کامل

Preparation of porous hydroxyapatite scaffolds

In this work, the sintering and grain growth of hydroxyapatite green bodies are analyzed in order to identify the optimum heat treatments for the preparation of porous hydroxyapatite scaffolds. Sintering in air at temperatures ranging between 1100 and 1200 °C yields dense materials with narrow grain-size distributions. The scaffolds are formed by the infiltration of polymer foams with hydroxyap...

متن کامل

Efficient in vivo vascularization of tissue-engineering scaffolds.

The success of tissue engineering depends on the rapid and efficient formation of a functional blood vasculature. Adult blood vessels comprise endothelial cells and perivascular mural cells that assemble into patent tubules ensheathed by a basement membrane during angiogenesis. Using individual vessel components, we characterized intra-scaffold microvessel self-assembly efficiency in a physiolo...

متن کامل

Biophysical Mechanisms That Govern the Vascularization of Microfluidic Scaffolds

Methods to engineer vascularized tissues have historically focused on chemical and/or biological strategies (Lovett et al. 2009). For instance, loading of scaffolds with vascular growth factors, functionalization of scaffolds with bioactive peptides, or incorporation of extracellular matrix (ECM) components into scaffolds can induce angiogenesis and vasculogenesis, the natural processes of vasc...

متن کامل

RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties

A major limitation in the development of effective scaffolds for bone regeneration has been the limited vascularization of the regenerating tissue. Here, we propose the development of a novel calcium phosphate cement (CPC)-based scaffold combining the properties of mesoporous silica (MS) with recombinant human bone morphogenic protein-2 (rhBMP-2) to facilitate vascularization and osteogenesis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The FASEB Journal

سال: 2015

ISSN: 0892-6638,1530-6860

DOI: 10.1096/fasebj.29.1_supplement.792.4